
Chemical Engineering Thermodynamics Quiz 1 January 17, 2019

Consider a simplified steam turbine/condenser/boiler/superheater for production of electricity shown in the schematic below. Fill in the table below the diagram to answer the questions using the steam table attached.

- a) Use the steam tables to determine the shaft work, W_s , for the turbine **in kW** (which is kJ/s). Under and adiabatic assumption (no heat loss) the shaft work equals the difference in enthalpy, *H*, between the exiting and entering streams at 100% efficiency. (The flow rate is 1100 kg/h for all streams.)
- b) Calculate the combined heat needed for the boiler and superheater (boiler converts from liquid to vapor and superheater further heats the steam) in kW (which is kJ/s). (This is the enthalpy (*H*) difference between the streams.)
- c) Take the ratio of the shaft work recovered from the steam turbine to the heat needed for the boiler to get an idea of how efficient this system is at 100% efficiency.
- d) On the log-log *P* vs *V* plot below approximately show the points 1, 2 and 3. Do the same for the *P* vs $\log_{10}V$ plot from the book (the scale isn't optimal for this). Note that on a log *V* x-axis the lever rule doesn't work.
- e) If *PV* is a measure of energy or work what do you think is the meaning of the area under the line connecting points 1 and 2 and the area under the line connecting points 3 and 1 on the *P* vs *V* plot. Why do the two areas seem to be different?

Т	Р		V^L	V^V	U^L	ΔU^{vap}	U^{\dagger}		H^L	ΔH^{ν}	<i>ip</i>	H^{V}	SL	ΔS ^{wap}	S^V
(°C)	(MP	a) n	n ³ /kg	m ³ /kg	kJ/kg	kJ/kg		g l	kJ/kg	kJ/k		kJ/kg	kJ/kg-K	kJ/kg-K	kJ/kg-K
6.97	0.001	0.001		129.1780	29.30	2355.19	2384.49		1000000	2484.37		3.67	0.1059	8.8690	8.9749
17.50	0.002	0.001		66.9869	73.43	2325.47	2398.90			2459.45		2.88	0.2606	8.4620	8.7226
24.08	0.003	0.001	1003	45.6532	100.98	2306.90	2407.88		98	2443.86		4.84	0.3543	8.2221	8.5764
28.96	0.004	0.001		34.7911	121.38	2293.12	2414.50			2432.28		3.67	0.4224	8.0510	8.4734
32.87	0.005	0.001		28.1853	137.74	2282.06	2419.80			2422.98		0.73	0.4762	7.9176	8.3938
36.16	0.006	0.001	1006	23.7334	151.47	2272.76	2424.23			2415.15		6.63	0.5208	7.8082	8.3290
39.00	0.007	0.001		20.5245	163.34	2264.71	2428.05	163.	35	2408.37		1.72	0.5590	7.7155	8.2745
41.51	0.008	0.001		18.0989 16.1992	173.83 183.24	2257.58 2251.19	2431.41 2434.43			2402.37 2396.97		6.21 0.22	0.5925	7.6348 7.5635	8.2273 8.1858
43.76 45.81	0.009 0.01	0.001		14.6701	191.80	2231.19	2434.43	185.	20 81	2390.97		3.86	0.6223 0.6492	7.4996	8.1488
60.06	0.01	0.001		7.6480	251.40	2204.58	2455.98			2357.52		8.94	0.8320	7.0752	7.9072
69.10	0.03	0.001		5.2284	289.24	2178.46	2467.70		27	2335.28	262	4.55	0.9441	6.8234	7.7675
75.86	0.04	0.001	1026	3.9930	317.58	2158.75	2476.33			2318.43		6.05	1.0261	6.6429	7.6690
81.32	0.05	0.001		3.2400	340.49	2142.72	2483.21			2304.68	264	5.22	1.0912	6.5018	7.5930
85.93	0.06	0.001		2.7317	359.85	2129.10	2488.95			2292.95		2.86	1.1455	6.3856	7.5311
89.93	0.07	0.001		2.3648	376.68	2117.20	2493.88			2282.67		9.42	1.1921	6.2869	7.4790
93.49	0.08	0.001		2.0871	391.63	2106.58	2498.21			2273.47		5.18	1.2330	6.2009	7.4339
96.69	0.09	0.001		1.8694	405.10	2096.97	2502.07			2265.11	267	0.31 4.95	1.2696	6.1247	7.3943
99.61 120.21	0.1	0.00		1.6939 0.8857	417.40 504.49	2088.15 2024.60	2505.55 2529.09			2257.45 2201.53		4.95 6.23	1.3028 1.5302	6.0561 5.5967	7.3589 7.1269
133.52	0.2 0.3	0.001		0.6058	561.11	1982.04	2529.09	561.		2163.45	270	4.88	1.6717	5.3199	6.9916
143.61	0.4	0.001		0.4624	604.22	1948.88	2553.10			2133.39		8.05	1.7765	5.1190	6.8955
151.83	0.5	0.001		0.3748	639.54	1921.17	2560.71			2108.02		8.11	1.8604	4.9603	6.8207
158.83	0.6	0.001		0.3156	669.72	1897.07	2566.79			2085.76		6.14	1.9308	4.8285	6.7593
164.95	0.7	0.001	108	0.2728	696.23	1875.58	2571.81	697.	00	2065.75	276	2.75	1.9918	4.7153	6.7071
170.41	0.8	0.001		0.2403	719.97	1856.06	2576.03			2047.44		8.30	2.0457	4.6159	6.6616
175.35	0.9	0.001		0.2149	741.55	1838.09	2579.64			2030.47		3.03	2.0941	4.5272	6.6213
179.88	1	0.001		0.1944	761.39	1821.36	2582.75			2014.59		7.11	2.1381	4.4469	6.5850
187.96	1.2	0.001		0.1633	796.96	1790.87	2587.83			1985.41		3.74	2.2159	4.3058	6.5217
195.04	1.4	0.001		0.1408	828.36	1763.40	2591.76			1958.88		8.85	2.2835	4.1840	6.4675
201.37 207.11	1.6 1.8	0.001		0.1237 0.1104	856.60 882.37	1738.23 1714.87	2594.83 2597.24			1934.36 1911.44	279	5.91	2.3435 2.3975	4.0764 3.9800	6.4199 6.3775
212.38	2	0.001		0.0996	906.15	1692.97	2599.12			1889.79		8.29	2.4468	3.8922	6.3390
223.95	2.5	0.001		0.0799	958.91	1643.15	2602.06			1840.02		1.93	2.5543	3.7015	6.2558
233.85	3	0.001	1217	0.0667	1004.69	1598.47	2603.16			1794.81		3.15	2.6456	3.5400	6.1856
242.56	3.5	0.001		0.0571	1045.47	1557.47	2602.94			1752.84		2.64	2.7254	3.3989	6.1243
P = 0.2		(120.3)	1001002-0012-001		P=0.2		(133.5)				P = 0.4		(143.6)		
$T(^{\circ}C)$	$V(m^3/kg)$	U(kJ/kg)	H(kJ/kg			V(m ³ /kg)	U(kJ/kg)				$T(^{\circ}C)$	V(m ³ /k			S(kJ/kg-K)
120.3	0.8857	2529.1	2706.2	7.1269	133.5	0.6058	2543.2	2724.9	6.9916		143.6	0.4624	2553.1	2738.1	6.8955
150 200	0.9599 1.0805	2577.1 2654.6	2769.1 2870.7	7.2810 7.5081	150 200	0.6340 0.7164	2571.0 2651.0	2761.2 2865.9	7.0791 7.3131		150 200	0.4709 0.5343	2564.4 2647.2	2752.8 2860.9	6.9306 7.1723
250	1.1989	2731.4	2971.2	7.7100	250	0.7964	2728.9	2967.9	7.5180		250	0.5952	2726.4	2964.5	7.3804
300	1.3162	2808.8	3072.1	7.8941	300	0.8753	2807.0	3069.6	7.7037		300	0.6549	2805.1	3067.1	7.5677
350	1.4330	2887.3	3173.9	8.0644	350	0.9536	2885.9	3172.0	7.8750		350	0.7140	2884.4	3170.0	7.7399
400 450	1.5493 1.6655	2967.1 3048.5	3277.0 3381.6	8.2236 8.3734	400 450	1.0315 1.1092	2966.0 3047.5	3275.5 3380.3	8.0347 8.1849		400 450	0.7726 0.8311	2964.9 3046.6	3273.9 3379.0	7.9002 8.0508
500	1.7814	3131.4	3487.7	8.5152	500	1.1867	3130.6	3486.6	8.3271		500	0.8894	3129.8	3485.5	8.1933
550	1.8973	3215.9	3595.4	8.6502	550	1.2641	3215.3	3594.5	8.4623		550	0.9475	3214.6	3593.6	8.3287
600	2.0130	3302.2	3704.8	8.7792	600	1.3414	3301.6	3704.0	8.5914		600	1.0056	3301.0	3703.2	8.4580
650	2.1287	3390.2	3815.9	8.9030	650	1.4186	3389.7	3815.3	8.7153		650	1.0636	3389.1	3814.6	8.5820
700 750	2.2443 2.3599	3479.9 3571.4	3928.8 4043.4	9.0220 9.1369	700 750	1.4958 1.5729	3479.5 3571.0	3928.2 4042.9	8.8344 8.9494		700 750	1.1215 1.1794	3479.0 3570.6	3927.6 4042.4	8.7012 8.8162
800	2.4755	3664.7	4159.8	9.2479	800	1.6500	3664.3	4159.3	9.0604		800	1.2373	3663.9	4158.8	8.9273
850	2.5910	3759.6	4277.8	9.3555	850	1.7271	3759.3	4277.4	9.1680		850	1.2951	3759.0	4277.0	9.0350
900	2.7066	3856.3	4397.6	9.4598	900	1.8042	3856.0	4397.3	9.2724		900	1.3530	3855.7	4396.9	9.1394
950 1000	2.8221 2.9375	3954.7 4054.8	4519.1 4642.3	9.5612 9.6599	950 1000	1.8812 1.9582	3954.4 4054.5	4518.8	9.3739 9.4726		950 1000	1.4108	3954.2 4054.3	4518.5	9.2409 9.3396
1050	2.9375	4054.8	4042.3	9.0599	1000 1050	2.0352	4054.5	4642.0 4766.7	9.4720		1050	1.4686 1.5264	4054.5	4641.7 4766.5	9.3390
1100	3.1685	4259.6	4893.3	9.8497	1100	2.1122	4259.4	4893.1	9.6624		1100	1.5841	4259.2	4892.8	9.5295
1150	3.2839	4364.3	5021.1	9.9411	1150	2.1892	4364.1	5020.9	9.7538		1150	1.6419	4363.9	5020.7	9.6209
1200	3.3994	4470.5	5150.4	10.0304	1200	2.2662	4470.3	5150.2	9.8431		1200	1.6997	4470.1	5150.0	9.7102
1250 1300	3.5148 3.6302	4578.1 4687.0	5281.1 5413.1	10.1176 10.2029	1250 1300	2.3432 2.4202	4577.9 4686.9	5280.9 5412.9	9.9303 10.0150		1250 1300	1.7574 1.8152	4577.8 4686.7	5280.7 5412.8	9.7975 9.8828
1000	2102Ma	100110	201201	1012027	1200		100017	211417	10010		1200	1101040	CODAT 1	2 Transfer	- 100 AU

Stream	P (Mpa)	τ (°C)	State	q	H (kJ/kg)	HL (kJ/kg)	HV (kJ/kg)	V (m3/kg)	VL (cm3/kg)	VV (cm3/kg)	V (cm3/mol)	log10 V
1	3.5	350	superheated steam									
2	0.79		V/L	0.5								
3		170	Sat. Liq.	0								
4												

Turn this sheet in with your answer

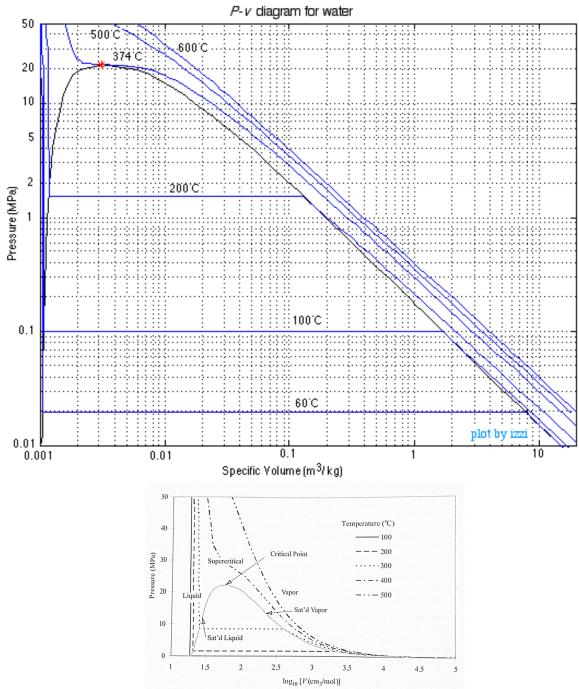
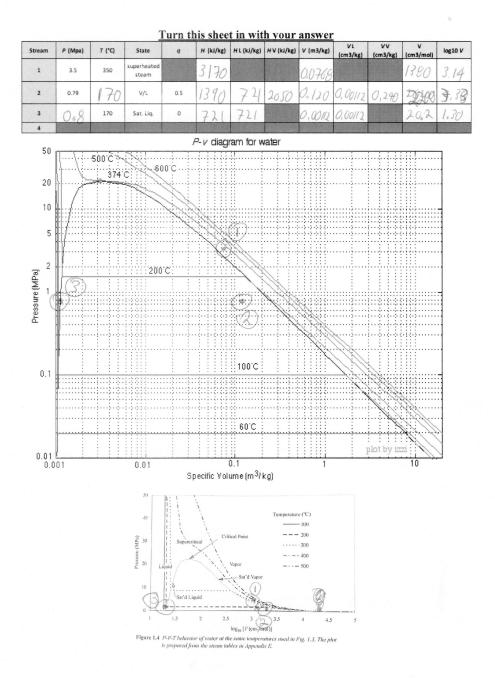



Figure 1.4 *P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot is prepared from the steam tables in Appendix E.*

ANSWERS: Chemical Engineering Thermodynamics Quiz 1 January 17, 2019

4

a) Find H1-H2 $W_{\rm s} = (3170-1390)$ kJ/kg (1100 kg/h) (1/(3600 s/h)) = 545 kW

b) Find H1-H3

Q = (3170-721)kJ/kg (1100 kg/h) (1/(3600 s/h)) = 748 kW

- c) 545 kW/748 kW = 0.729 or 72.9% efficiency.
- d) See plot
- e) The area under 1-2 is the work from the turbine, the area under 3-1 is the heat for the boiler. This is approximate since the connecting curve is not a line. The two areas disproportionate since this is plotted on a log-log scale.