Chemical Engineering Thermodynamics
 Quiz 1
 January 17, 2019

Consider a simplified steam turbine/condenser/boiler/superheater for production of electricity shown in the schematic below. Fill in the table below the diagram to answer the questions using the steam table attached.
a) Use the steam tables to determine the shaft work, W_{s}, for the turbine in $\mathbf{k W}$ (which is kJ / s). Under and adiabatic assumption (no heat loss) the shaft work equals the difference in enthalpy, H, between the exiting and entering streams at 100% efficiency. (The flow rate is $1100 \mathrm{~kg} / \mathrm{h}$ for all streams.)
b) Calculate the combined heat needed for the boiler and superheater (boiler converts from liquid to vapor and superheater further heats the steam) in $\mathbf{k W}$ (which is kJ / s). (This is the enthalpy (H) difference between the streams.)
c) Take the ratio of the shaft work recovered from the steam turbine to the heat needed for the boiler to get an idea of how efficient this system is at 100% efficiency.
d) On the $\log -\log P$ vs V plot below approximately show the points 1,2 and 3. Do the same for the P vs $\log _{10} V$ plot from the book (the scale isn't optimal for this). Note that on a log $V x$-axis the lever rule doesn't work.
e) If $P V$ is a measure of energy or work what do you think is the meaning of the area under the line connecting points 1 and 2 and the area under the line connecting points 3 and 1 on the P vs V plot. Why do the two areas seem to be different?

```
Water Molecular Weight 18.0 g/mol \(1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{3}\)
Watt \(=\mathbf{J} / \mathbf{s}\)
```


Turn this sheet in with your answer

Stream	P (Mpa)	$T\left({ }^{\circ} \mathrm{C}\right)$	State	q	H (kJ/kg)	HL (kJ/kg)	HV (kJ/kg)	$V(\mathrm{~m} 3 / \mathrm{kg})$	$\begin{gathered} V L \\ (\mathrm{~cm} 3 / \mathrm{kg}) \end{gathered}$	$\begin{gathered} V V \\ (\mathrm{~cm} 3 / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{V} \\ (\mathrm{~cm} 3 / \mathrm{mol}) \end{gathered}$	$\log 10 \mathrm{~V}$
1	3.5	350	superheated steam									
2	0.79		V/L	0.5								
3		170	Sat. Liq.	0								
4												

Figure 1.4 P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot is prepared from the stean tables in Appendix E.

ANSWERS: Chemical Engineering Thermodynamics

Quiz 1
January 17, 2019

Stream	ρ (Mpa)	${ }^{1}\left({ }^{\circ} \mathrm{C}\right)$	State	9	$\mathrm{H}(\mathrm{k} / \mathrm{/kg})$	$\mathrm{HL}(\mathrm{k} / \mathrm{kg})$	$\mathrm{HV}(\mathrm{k} / / \mathrm{kg})$	$v(\mathrm{~m} 3 / \mathrm{kg})$	$\begin{gathered} \mathrm{VL} \\ (\mathrm{~cm} 3 / \mathrm{kg}) \end{gathered}$		$\begin{gathered} \mathbf{v}^{2} \\ (\mathrm{~cm} 3 / \mathrm{mol}) \end{gathered}$	$\log 10 \mathrm{~V}$
1	3.5	350	superheated steam		3170			0.0709			1380	3.14
2	0.79	170	v/L	0.5	1390	721	2050	0.120	0,00112	0,240	22808	3,36
3	0.8	170	Sat. Liq.	0	721	721		0,00112	0,00112		20.2	1.30
4												

a) Find H1-H2
$W_{\mathrm{s}}=(3170-1390) \mathrm{kJ} / \mathrm{kg}(1100 \mathrm{~kg} / \mathrm{h})(1 /(3600 \mathrm{~s} / \mathrm{h}))=545 \mathrm{~kW}$
b) Find H1-H3
$Q=(3170-721) \mathrm{kJ} / \mathrm{kg}(1100 \mathrm{~kg} / \mathrm{h})(1 /(3600 \mathrm{~s} / \mathrm{h}))=748 \mathrm{~kW}$
c) $545 \mathrm{~kW} / 748 \mathrm{~kW}=0.729$ or 72.9% efficiency.
d) See plot
e) The area under 1-2 is the work from the turbine, the area under 3-1 is the heat for the boiler. This is approximate since the connecting curve is not a line. The two areas disproportionate since this is plotted on a log-log scale.

